## WWW.VIJAY-JOTANI.WEEBLY.COM

## GUJARATI STUDY MATERIAL



## DETAILED STUDY MATERIAL

## CREATED BY:

## NEEL JOTANI



| બંધ બનતા | ઉજા ઉત્પન થાય | ઉષ્માક્ષેપી પ્રક્કયા |
| :---: | :---: | :---: |
| બંધ તોડવા | ઉજો આપવી ૫ડ | ઉષ્માશોષી પ્રક્યયા |
| $\rightarrow$ કોઇપણ તત્વ＂ઉત્કૃષ્ટ ગેસ＂જેવી સ્થાયી ઇલેકટ્રોન વિન્યાસ પ્રાપ્ત કરવા બંધ બનાવે |  |  |
| આયનિક બંધ ઉપસંયોજી બંધ |  |  |

## આયનિક બંધ／વિદ્યૃત સંયોજક બંધ

＂કોસલ સિધ્ધાંત અનુસાર જે બંધમા પરમાણુુ $\mathbf{e}$ લઇને કे દઇને ઉત્કૃષ્ટ ગેસ જેવી ઇલેકટ્રોન વિન્યાસ પ્રાપ્ત કરે＂
$\rightarrow$ આ બંધમા એક પરમાશુ $\mathbf{e}$ લઇ અને બીજો પરમાણ્રુ $\mathbf{e}$ をઇ છુટા ૫ડે તેથી બંને આયન બને છે ．．．．ત્યાર બાદ＋ve પરમાણુુુ અને－ve પરમાણું વચ્ચ્ય＂સ્થીી વિદ્યૃત આકર્ષણ＂＂થી તે બંને નિશ્ચ્ચીત અંતરે
સ્થાયીત્વ પ્રાપ્ત કરે．．．．જયાથી દુર પણા ન જાય．．．．નજ઼ક પણા ન આવે．．．


## आयनिક ब゙ध जनती वभते उर्भा

| Original બंधनી Эજા．．．．．તત્વોનl ઉજ્જાના સરવાળા કરતા ઓછી | કા．కे．．．．બંધ બનતા ઉર્જા release थાય |
| :---: | :---: |

## GEl：


આ મ્રોસેસમા＂Born Hyber cycle＂થી ઉજ્જા પાંચ ચરણોમા પ્રોસેસ થાય છે

| Na ની પ્રોસેસ ： |  |  |
| :---: | :---: | :---: |
| （1）enthalpy sublimation Aifs | Na ઘनમાથી વાયુ બનશે | $\begin{array}{\|l\|} \hline \mathrm{Na}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{(\mathrm{g})} \\ \hline \mathrm{AHF}_{5}=108.7 \\ \hline \end{array}$ |
| （2）Ionization enthalpy（ L．E $)$ | $\mathrm{Na}_{(\mathrm{g})}$ भાથી $\mathrm{Na}^{+}$આયન બન | $\begin{array}{\|l} \hline \mathrm{Na}_{(\mathrm{g})} \rightarrow \mathrm{Na}^{+}+\mathrm{e} \\ \hline \mathbf{L E}=493.8 \\ \hline \end{array}$ |
| Cl નl પ્રોસેસ： |  |  |
| $\begin{aligned} & \text { (3)વિયોજન ઉર્જાં } \\ & \text { (Ns, } \end{aligned}$ |  | $\frac{1 / 2 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{Cl}_{(\mathrm{g})}}{\mathrm{dH}}$ |
| （4）electron affirnity $\left({ }^{\boldsymbol{E} \mathbf{A}}\right.$ ） | $\mathrm{Cl}_{\text {（घ）}}$ परभाற Cl－आयन બन | $\begin{aligned} & \mathrm{Cl}_{(\mathrm{f})}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-} \\ & \mathbf{E .} \mathbf{A}_{=-379.5} \end{aligned}$ |
| NaClनु निर्भाञ：，＊ |  |  |
| （5）lattice enthalpy | （દિસ્ટલ 子 જાલક બને） | $\Delta \mathrm{H}_{\text {mia }}=-410.9$ |

## Energy of formation＝

$\Delta H_{s}+\boldsymbol{H E}+\Delta \mathbf{H}_{\mathbf{L}}-\mathbf{E A}+\Delta \mathrm{H}_{\mathrm{tai}}=\Delta \mathrm{H}_{4}$
$[108.7+493.8+(-120.9)-(-379.5)+(-410.9)]=-410.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## આયનિf बંધ બનવાની સ્ગગમતl／સંભાવનl

（1）ધાતુની＂આયનન એન્થાલ્ીી＂ઓછી હોય
（2）બીજા તત્વની＂ઇલેકટ્રોન બંધુતા＂વધારે
（3）＂જાલક ઉર્જા＂વધુ હોય

## આयनिક બંધ નl લશ્ષञll ：

（1）કિસ્ટલીય ઘન હોય．．．．નિયમિત ત્રિવિમિય સંરયના ધરાવે
（2）કઠોર અને ભંગુર
（3）ગલનાંક（melting）અને કવથંનાંક（boiling point）ઉચ્યા
（4）જલમા જલ્દીથી વિલયન．．．．૫રંતું＂અધુવી વિલાયકો＂મા ઓછા વિલયન（અધુવી વિલાયકો＝ઇથર，આલ્કોહોલ）
（5）આયનિક બોન્ડના જલીય વિલયન＂વિદ્યૃત ચાલકતા＂દેખાડ
（6）રંગ．．．．．આયનના રંગ પર આધારિત

## કીસલ－લ્વુસ રચના：

$\rightarrow$ આયનિક બંધ＂કોસલ સિધ્યાંત＂પર આધારિત．．．．
$\rightarrow$ પરંતું કોસલ સિધ્ધાંતની મર્યાદા એ છે ક＂તે આયનિક બંધની જેમ અત્યંત વિદ્યૃત घનાત્મક અથવા અત્યંત વિદ્ય્ત＊ણ઼ાત્મક માટે જ લાગુ
$\rightarrow$ બાકી માટે લુઇસે＂સહસંયોજક બંધ＂＂ર્શાવ્યા
લુુસ સંરચના પ્રમાણો આયનિક બંધ દર્શાવવા

## 

## સહસંયોજક બંધ：

＂બે પરમાણું ઇલેકટ્રોન યુગ્મ ના સહભાજન દ્વારા બનાવે＂

：মં નને＂લુઇસ પ્રતિક＂કહવામા આવે છે
આ બંધમા બંધ બન્યા બાદ તત્વાં અષ્ટક પ્રાપ્ત ક્તે લે તેથી આને
＂અષ્ટકનો નિયみ＂પણા કહૈવાય

| એક $\mathbf{e}$ યુગ્મનુ સહભાજન | ओકલ બંધ |
| :---: | :---: |
| ७． $\mathbf{e}$ યુગ્મનુ સહભાજન | द्वि બંધ |
| 『 યુળ્મનુ સહભાજન | ત્રિબ્ધ |
| બંધુ બનવા વપરાતા $\mathbf{e}$ | બંધ યુગ્મ－bond pair |
| બંધમા ભાગ ન લે | એકાંકી યુગ્મ－lone pair |
| ધ્રુવીય સહસંびજ બંધ： |  |

$\rightarrow$ सહસંયોજક બંધમા સહભાજત ઇલ્ક્ટ્રોન યુગ્મ＂વધારે વિદ્યૃત \＃ણાતા વાબા＂પરમાણુ તરई આકર્ષાય તેની વqારે નજીક થઇ જાય અને બંધ＂ધુવીય＂બને

II ：CI ：
$\rightarrow$ ઉEા：．．હાઇડ્રોજન અને કલોરીન વચ્ચેના આ બંધમા
એવુ લાગે કે $\mathbf{e}$ બંને વચ્ચે સહભાજન થયેલ છે．．．．．પરંતુ ખરેખર એવુ નથી ．．．．．કલોરીનના વધુ વિદ્યૃત ઋણાત્મકતાને લીધે હાઇડ્રોજનનો $\mathbf{e}$ કલોરીન તરફ વધુ આકર્ષાયેલો રહે છે．．．．તેથી કલોરીન’ઓંશિક ＊ણાયન＂अને હાઇડ્રોજન＂આiશશિક ધનાયન＂બને．．．．જેન ની ચે મુજબ દર્શાવાય

$$
\mathrm{H}^{8+}-\mathrm{Cl}^{x^{-}}
$$

## ધ્ધુવીય સહસંયા૦૦ વંધ：

＂જે બંધમા બંધના બંને ઇલેક્ટ્રોન એકજ પરમાણુું દ્વારા આપવામા આવે＂
 サनરાગll Eોય
$\rightarrow$ आમા બંધને $\longrightarrow$ वડે દર્શાવાય


આમા $\mathrm{BF}_{3}$ ને અષ્ક પુરુ કરવા બે $\mathbf{e}$ જંધએે પરંતુ તેની પાસે હવે એંક૫ણા $\mathbf{e}$ બંધ બનાવવા નથી．．．．અને $\mathrm{NH}_{3}$ પાસો અષ્ટક પરૂ થઈ ગયુ હોવા છતા બે વધારે $\mathbf{e}$ છे


## उ૫સંયો毋 VSસલસંયોજક બંધ

અંતર માત્ર નિર્માણમા．．．．．．બન્યા પછી બને વચ્યે ેેદ્દ કરવો મુશ્કેલ

| electrophile |  | nucliphile： |  |
| :---: | :---: | :---: | :---: |
| બંધ બનાવવાની જરૂ | છे | બંધ બનાવવાની જ३マ | नथી |
| e युフ्म | नथी | e યुग्म | छे |

## સૌહસંયોજ સંયાજકોનl ગ્બાધમા：

| q | અણુઓ વચ્યે interaction બળ પ્રબળ તેથી ગલનાiક－કવथનાંક ઓほછા |
| :---: | :---: |
| र | આયનની ઉપસ્થિતિ ન હોય તેથી વિદ્યૃત ચાલકતા ઓછી |
| 3 | સામાન્યત：જલમા અવિલેય <br> પર્તું ધુવિય વિલાયક（બેન્જનન，કાર્બન ટેટ્રાકલોરાઇડ）મા ધુલનશીલ |

હાધડ્રાજન વંધ：


વચ્ચેનો બંધ＂


## बાઈ્ર્રોજન બંધનો ઉપયો ：

$\rightarrow$ જો કે હાઇહ્રોજન બળ પ્રબળ ન હોય．．．．કા．કે．તેની બંધ ઉજ્જા માત્ર 4 to 25 kJ mol 1 હોય．．．．સહસંયોજક બંધ ની＂સેકકડો kJ mol
$1^{\prime \prime}$ સામે નગા઼્ય
$\rightarrow$ પરંતું આ બંધ અટલો પ્રબળ કે તે ક્વથનાંક（boiling
point）વધારી \＆
डાઈड्रोوन વiधनl Gદl：
$\rightarrow$ પાગીની પ્રવાહી અવસ્થા
$\rightarrow$ બરફનુ ઓછુ घનત્વ

|  |  |
| :---: | :---: |
|  |  <br> सेलिसिलग्ल्क्बीहाइड |

## 

＂આ સિધ્ધાંત અણુુુના એૅન્દ્યિ પરમાણુા．．．ના સંયોજકતા કોશમા ઉપસ્થિત．．．ઇલેકટ્રોન યુગ્મ પ૨ આધારિત＂
$\rightarrow$ બે અબિધારણા：
 Be）મા ઉપસ્થિત ઇલેકટ્રોન યુગ્મ（both bond pair and lone pair）પોતાને એવી ઈીતે વ્યવસ્થિત કરે કे તેમના વચ્ચે ન્યુનતમ અપાકર્ષણા બળ લાગે



| अण్v⿺𠃊 | $e$ यु्य | આકૃતત | સંરચના | ЗЕ1 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{AX}_{2}$ | 2 | रुणीय | $\frac{18 y}{8}$ |  |
| $\begin{aligned} & \mathrm{AX}_{3} \\ & \mathrm{AX}_{4} \end{aligned}$ | $3$ $4$ | सમબાજુ <br> ત્રિકોણા <br> ચતુ <br> ૬લક今ય |  |  |
| $\mathrm{AX}_{5}$ | 5 | ત્રિકોচી｜ય દ્વિપિરામેડી | 1 |  |
| $\mathrm{AX}_{6}$ | 6 | अષ્ઠ§કી4 |  |  |

२


उ૫૨ આપેલ આકૃતિ ત્યારે બને જ્યારે માત્ર બોન્ડ પેર હોય．．．．ઘધી વાર bond pair સાથે lone pair હોય ત્યારે આ પુર્વધારણા મુજબ આક્કૃતિ વિક્કૃત થાય
ઉદા：

| મિથેન $\mathrm{CH}_{4}$ |  |  | એમોનિયા $\mathrm{NH}_{3}$ |  | પıษી $\mathrm{H}_{2} \mathrm{O}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| આ જણોમા કૅન્દ્વય પરમાઘ્હુની યારેબાજુ 4 e pair છે કા．કે તેમા lone pair છે．．．．夕ે આકૃતિ વિદ્કૃત કરે |  |  |  |  |  |  |
| अ팅 | bond pair | lone pair | Hદૃ̧̂ત | સં₹2 |  |  |
| $\mathrm{CH}_{4}$ | 4 | 0 | $\begin{aligned} & \text { ચતુલકિ } \\ & \text { ※લ } \end{aligned}$ |  |  | 109.5 |
| $\mathrm{NH}_{3}$ | 3 | 1 | ત્રિકોણીય દ્વિપિરામેડી |  |  | $207$ |
| $\mathrm{H}_{2} \mathrm{O}$ | 2 | 2 | બેન્દ |  |  | $104.5$ |

## 

 એકબીજાની નજ઼ક આવે ત્યારે પરમાવુુ કદ્વકોનુ overlapping થાય છે.....
$\rightarrow$ બંધની મબલત કક્ષકોના overlappingની માત્રા અને મ્રભાવકાર પર આધારિત.....

 હોય.....પપા જેમ જેમ તે નજ઼ક આવતા જાય....તેમ તેમ કક્ષકોનુ overlapping થતુ જાય....અને તેની Эજ્જા ઓછી થતી જાય(કા.\} bond formation aખતે ૬જા જવ્મન થાય)....બંધ લંબાઈના બરાબર અંતરે overlapping maximum અને ઉર્જા ન્યુનતમ થાય
$\rightarrow$ કક્ષકોના common ક્ષેત્રમા રહેલ $\mathbf{e}$ પર બંને પરમા|ુુના નાભિક अસર fરે

## zis2Fl-Hybridization:

કક્ષકમા $\frac{1}{\nabla}$ આ પ્રકારની રચના હોય....જો પરમાશુુુ બંધ બનાવવો હોય તો તે સરખા બે વિપરિત ઇલેકટ્રોન જોડાવા ૫ડ
 જોડાય છે....આ બાબત પર સંકરણા નો આધાર છે

## Hybridization $1 /$ भstrl:

## $\mathrm{BeH}_{2}$


is ${ }_{23} \rightarrow$ बंध ตनावqा तौने Hना 1s $\downarrow$ รक्ष साथे



$\rightarrow$ आथ $\mathrm{BeH}_{2}$ \&न........
$\rightarrow$ पરંતુ, એેક સમસ્યા સેવી છે ક.....

| पèલl H-ી 1s s¢¢s | Be ना 2s સાથે બંધ બનાવે |
| :---: | :---: |
| બીજા Hनી 1s s¢્ષร | Be नા 2 p સાથે બંધ બનાવે | તેથી બનનના ગુણધર્મો અલગ હોવા જોઇએ.....૫ણા એવુ બનતુ નથી બંનના ગુણાધર્રો સમાન જોવા મળે છે....તનુુ કારા "સંકરા"" છે

## sp सisर2st-spHybridization :

"જ્યારે એક એક અયુગ્મિત ઇલેકટ્રોનવાળા 2 s અને 2 p કક્ષક સંકરીત થધ Sp સંકરિત કક્ષક બનાવે તેને....."


આમ તે એક sp નુ સંયુકત કક્ષક બને....તેથી તેમા સમાન ગુણધર્મા


"જ્યારે અયુગ્મિત ઇલેકટ્રોનવાળા ઓક $2 s$ અને બે $2 p$ કક્ષક સંકરીત થઇ $\mathrm{sp}^{2}$ સંકરિત કક્ષક બનાવે તેને.

## બોરોન ટ્વાયકલોરાઇડ


$\underline{s p}^{3}$ सisरSt $-s p^{3}$ Hybridization :
"જ્યારે અયુગ્મિત ઇલેકટ્રોનવાળા એક 2 s અને ત્રશ 2 p કક્ક સંકરીત થધ $\mathrm{sp}^{3}$ સંકરિત ક્ષ્ષક બનાવે તેને....."
મિથેન



## VISIT:WWW.VIJAY-JOTANI.WEEBLY.COM

## पाड़ें ( $\pi$ आबंध)

"જ્યારે અસંકરિત કક્ષક Z -અક્ષને લંબ overlapping કરે ત્યારે બંધ અક્ષ Z-અક્ષ પર શુન્ય ઇલેકટ્રોન હોય.....અને ઉપર-નીચે વધુ


જેમાથી 2 s એ $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}$ સાથે મળી $\mathbf{s p}^{2}$ સંકરણ બનાવી બે હાઇ્ર્રોજન અને એક કાર્બન સાથે એમ ત્રણા $\sigma$ બંધ બનાવે


હવે બને કાર્બનનો એક એક વધેલો $\mathbf{p}$-કક્ષક Z -અक્ષ ( Z તલ) ની બહાર overlapping કરશે ซે $\pi$ બંધ છે


જે C-C બંધ વચ્ચેના $\sigma$ બંધને આવરણા આપે


તેથી બે કાર્બન પરમાશું વચ્ચે બે આ બંધ બને ઓક $\sigma \sigma$ બંધ અને ઓક $\pi$ ब่ધ

શા માટે એક $\sigma$ બંધ અને એક $\pi$ બંધ બને ? ? ? ?
બે $1 \sigma$ બંધ કેમ ન બને ? ? ? ?
કા.કે. હાઈબિડાઇસન પછી.....
Gદા: $\underline{\mathrm{C}}_{2} \underline{H}_{4}$ માટે વિચાચીએ


ાર્બનમા આ યાર માટે બોન્ડ બનાવવાનો થાય....હવે બોન્ડ બનાવવા સામે બે હાઇડ્રોજન અને ઓક કાર્બન છે....તેથી ...

બે હાઇડ્રોજન

## $\mathbf{S}$ ગોળકાર કક્ષક હોવાથી ગમે તે દિશામાથી

 bond બनावेએક કાર્બન
p કક્ષક હોવાથી કાંતો $X$ अथવા $y$ अथવા $Z$
બનાવી શકે
એટલે के માત્ર ગમે તે એક જ Eિशામા પુર્ણ બોન્ડ બનાવી શકે
તૈથી total ત્રણા પુર્ણ બોન્ડ માટે.


આ બધી વિલેય થઈ નવુ જમાળખુ બનાવે.......


આવા ત્રણ઼ $\mathbf{s p}^{2}$ કક્ષક બનાવી નાખે...... પશા એક $p$ એમ જ રહે આ યારેય ભેગા મળી VSPER થીયરી મુજબ આકૃતિ બનાવી નાખે જેનીચે મુજબ રચના બનાવે


